Tag Archives: Julia

Automatic differentiation from scratch

By: Pablo Rodríguez-Sánchez

Re-posted from: https://blog.esciencecenter.nl/automatic-differentiation-from-scratch-23d50c699555?source=rss----ab3660314556--julia

A surprisingly simple and elegant way to teach your computer how to perform derivatives, with some Julia (and Python) examples

Photo by Crissy Jarvis on Unsplash

First, a disclaimer

Automatic differentiation is a well-known sub-field of applied mathematics. You definitely don’t have to implement it from scratch, unless, as I did, you want to. And why would you want to do such a thing? My motivation was a mix of the following:

  • I like to understand what the packages I use do
  • The theory behind automatic differentiation happens to be very beautiful
  • I could use it as a case study to improve my understanding of the Julia language

Furthermore, if you are interested in performance, you’d likely want to focus on backward automatic differentiation, and not, as I did, on the forward one.

If you are still reading, it means that after all these disclaimers your intrinsic motivation is still intact. Great! Let me introduce you to the fascinating topic of automatic differentiation and my (quick and dirty) implementation.

Enter the dual numbers

Probably you remember it from your high school years. The nightmare of derivatives! All those tables you had to memorize, all those rules you had to apply… chances are that it is not a good memory!

Would it be possible to teach a computer the rules of differentiation? The answer is yes! It is not only possible but can even be elegant. Enter the dual numbers! A dual number is very similar to a two-dimensional vector:

the first element represents the value of a function at a given point, and the second one is its derivative at the same point. For instance, the constant 3 will be written as the dual number (3, 0) (the 0 means that it’s a constant and thus its derivative is 0) and the variable x = 3 will be written as (3,1) (the 1 meaning that 3 is an evaluation of the variable x, and thus its derivative respective to x is 1). I know this sounds strange, but stick with me; it will become clearer later.

So, we have a new mathematical toy. We have to write down the game rules if we want to have any fun with it: let’s start defining addition, subtraction, and multiplication by a scalar. We decide they follow exactly the same rules that vectors do:

So far, nothing exciting. The multiplication is defined in a more interesting way:

Why? Because we said the second term represents a derivative, it has to follow the product rule for derivatives.

What about quotients? You guessed… the division of dual numbers follows the quotient rule for derivatives:

Last but not least, the power of a dual number to a real number is defined as:

Perhaps you feel curiosity about the multiplication by u’. This corresponds to the chain rule, and enables our dual numbers for something as desirable as function composition.

The operations defined above cover a lot of ground. Indeed, any algebraic operation can be built using them as basic components. This means that we can pass a dual number as the argument of an algebraic function, and here comes the magic, the result will be:

It is hard to overstate how powerful this is. The equation above tells us that just by feeding the function the dual number (x, 1) it will return its value at, plus its derivative! Two for the price of one!

Those readers familiar with complex numbers may find interesting to try the following exercise:

If we define a dual number as

(u, u’) = u + e u’

with e² = 0, all the properties above are automatically satisfied!

Teaching derivatives to your computer

Just as a calculus student will do, the rules of differentiation turn a calculus problem into an algebra one. And the good news: computers are better at algebra than you!

So, how can we implement these rules in a practical way on our computer? Implementing a new object (a dual number) with its own interaction rules sounds like a task for object-oriented programming. And, interestingly enough, the process is surprisingly similar to that of teaching a human student. With the difference that our “digital student” will never forget a rule, apply it the wrong way, or forget a minus sign!

So, how do these rules look, for instance, in Julia? (For a Python implementation, take a look here). First of all, we need to define a Dual object, representing a dual number. In principle, it is as simple as a container for two real numbers:

""" Structure representing a Dual number """
struct Dual
x::Real
dx::Real
end

Later, it will come in handy to add a couple of constructors.

""" Structure representing a Dual number """
struct Dual
x::Real
dx::Real

""" Default constructor """
function Dual(x::Real, dx::Real=0)::Dual
new(x, dx)
end

""" If passed a Dual, just return it
This will be handy later """
function Dual(x::Dual)::Dual
return x
end
end

Don’t worry too much if you don’t understand the lines above. They have been added only making the Dual object easier to use (for instance, Dual(1) would have failed without the first constructor, and so would have done the application of Dual to a number that is already a Dual).

Another trick that will prove handy soon is to create a type alias for anything that is either a Number (one of Julia's base types) or a Dual.

const DualNumber = Union{Dual, Number}

And now comes the fun part. We’ll teach our new object how to do mathematics! For instance, as we saw earlier, the rule for adding dual numbers is to add both their components, just as in a 2D vector:

import Base: +
function +(self::DualNumber, other::DualNumber)::Dual
self, other = Dual(self), Dual(other) # Coerce into Dual
return Dual(self.x + other.x, self.dx + other.dx)
end

We have to teach even more basic stuff. Remember a computer is dramatically devoid of common sense, so, for instance, we have to define the meaning of a plus sign in front of a Dual.

+(z::Dual) = z

This sounds as idiotic as explaining that +3 is equal to 3, but the computer needs to know! Another possibility is using inheritance, but this is an advanced topic beyond the scope of this piece.

Defining minus a Dual will also be needed:

import Base: -
-(z::Dual) = Dual(-z.x, -z.dx)

and actually, it allows us to define the subtraction of two dual numbers as a sum:

function -(self::DualNumber, other::DualNumber)::Dual
self, other = Dual(self), Dual(other) # Coerce into Dual
return self + (-other) # A subtraction disguised as a sum!
end

Some basic operations may be slightly trickier than expected. For instance, when is a dual number smaller than another dual number? Notice that in this case, it only makes sense to compare the first elements, and ignore the derivatives:

import Base: <
<(self::Dual, other::Dual) = self.x < other.x

As we saw before, more interesting stuff happens with multiplication and division:

import Base: *, /

function *(self::DualNumber, other::DualNumber)::Dual
self, other = Dual(self), Dual(other) # Coerce into Dual
y = self.x * other.x
dy = self.dx * other.x + self.x * other.dx # Rule of product for derivatives
return Dual(y, dy)
end

function /(self::DualNumber, other::DualNumber)::Dual
self, other = Dual(self), Dual(other) # Coerce into Dual
y = self.x / other.x
dy = (self.dx * other.x - self.x * other.dx) / (other.x)^2 # Rule of quotient for derivatives
return Dual(y, dy)
end

and with potentiation to a real number:

import Base: ^
function ^(self::Dual, other::Real)::Dual
self, other = Dual(self), Dual(other) # Coerce into Dual
y = self.x^other.x
dy = other.x * self.x^(other.x - 1) * self.dx # Derivative of u(x)^n
return Dual(y, dy)
end

The full list of definitions for algebraic operations is here. For Python, use this link. I recommend taking a look!

After this, each and every time our dual number finds one of the operations defined above in its mysterious journey down a function or a script, it will keep track of its effect on the derivative. It doesn’t matter how long, complicated, or poorly programmed the function is, the second coordinate of our dual number will manage it. Well, as long as the function is differentiable and we don’t hit the machine’s precision… but that would be asking our computer to do magic.

Example

As an example, let’s calculate the derivative of the polynomial:

at x = 3.

For the sake of clarity, we can compute the derivative by hand:

it is apparent that and p(3) = 39 and p’(3) = 34.

Using our Dual object, we can reach the same conclusion automatically:

poly = x -> x^3 + x^2 + x 
z = Dual(3, 1)
poly(z)

> Dual(39, 34)

Even if the same polynomial is defined in a more intricate way, the Dual object can keep track:

""" Equivalent to poly = x -> x^3 + x^2 + x
Just uglier """
function poly(x)
aux = 0 # Initialize auxiliary variable
for n in 1:3 # Add x^1, x^2 and x^3
aux = aux + x^n
end
end

poly(z)

> Dual(39, 34)

What about non-algebraic functions?

The method sketched above will fail miserably as soon as our function contains a non-algebraic element, such as a sine or an exponential. But don’t panic, we can just go to our calculus book and teach our computer some more basic derivatives. For instance, our table of derivatives tells us that the derivative of a sine is a cosine. In the language of dual numbers, this reads:

Confused about the u’? Once again, this is just the chain rule.

The rule of thumb here is, and actually was since the very beginning:

We can create a _factory function that abstracts this structure for us:

function _factory(f::Function, df::Function)::Function
return z -> Dual(f(z.x), df(z.x) * z.dx)
end

So now, we only have to open our derivatives table and fill line by line, starting with the derivative of a sine, continuing with that of a cosine, a tangent, etc.

import Base: sin, cos

sin(z::Dual) = _factory(sin, cos)(z)
cos(z::Dual) = _factory(cos, x -> -sin(x))(z) # An explicit lambda function is often required

If we know our maths, we don’t even need to fill all the derivatives manually from the table. For instance, the tangent is defined as:

and we already have automatically differentiable sine, cosine, and division in our arsenal. So this line will do the trick:

import Base: tan

tan(z::Dual) = sin(z) / cos(z) # We can rely on previously defined functions!

Of course, hard-coding the tangent’s derivative is also possible, and probably good for code performance and numerical stability. But hey, it’s quite cool that this is even possible!

See a more complete derivatives table here (Python version here).

Example

Let’s compute the derivative of the non-algebraic function

It is easy to prove analytically that the derivative is 1 everywhere (notice that the argument of the tangent is actually constant). Now, using Dual:

fun = x -> x + tan(cos(x)^2 + sin(x)^2)

z = Dual(0, 1)
fun(z)

> Dual(1.557407724654902, 1.0)

Making it more user-friendly

We can use dual numbers to create a user-friendly derivative function:

"""
derivative(f)

Seamlessly turns a given function f
into
the function's derivative
"""
function derivative(f)
df = x -> f(Dual(x, 1.0)).dx
return df
end

Using this, our example above will look like:

fun = x -> x + tan(cos(x)^2 + sin(x)^2)

dfun = derivative(f)
dfun(0)

> 1.0

Another example

Now we want to calculate and visualize the derivatives of:

First, we have to input the function, and the derivative gets calculated automatically:

f(x) = x^2 - 5x + 6 - 5x^3 - 5 * exp(-50 * x^2)

df = derivative(f)

We can visualize the results by plotting a tangent line:

using Plots

I = [-0.7; 0.7]
δ = 0.025
@gif for a = [I[1]:δ:I[2]; I[2]-δ:-δ:I[1]+δ]
L(x) = f(a) + df(a) * (x - a)
plot(f, -1, 1, leg=false)
scatter!([a], [f(a)], m=(:red, 2))
plot!(L, -1, 1, c=:red)
ylims!(-5, 15)
end

Is this useful?

Automatic differentiation is particularly useful in the field of Machine Learning, where multidimensional derivatives (better known as gradients) have to be performed as fast and exactly as possible. Said this, automatic differentiation for Machine Learning is usually implemented in a different way, the so-called backward or reverse mode, for efficiency reasons.

A well-established library for automatic differentiation is JAX (for Python). Machine learning frameworks such as Tensorflow and Pytorch also implement automatic differentiation. For Julia, multiple libraries seem to be competing, but Enzyme.jl seems to be ahead. Forwarddiff.jl is also worth taking a look at.

Acknowledgments

I want to say thanks to my colleague and friend Abel Siqueira, for kindly introducing me to Julia and reviewing this post, and to Aron Jansen, for his kind and useful suggestions. A more in-depth introduction can be found in this episode of Chris Rackauckas’ book on scientific machine learning.

The TeX Math Here browser add-in also played an important role: it allowed me to transfer my Latex equations from Markdown to Medium in an (almost) painless way.


Automatic differentiation from scratch was originally published in Netherlands eScience Center on Medium, where people are continuing the conversation by highlighting and responding to this story.

RAW photo library automation with Julia

By: jkrumbiegel.com

Re-posted from: https://jkrumbiegel.com/pages/2023-09-12-capture-one-photos-sqlite/index.html

In this post I describe how I use Julia to automatically synchronize my Capture One raw photo catalog to my iCloud via Apple Photos, so that I can view and share the jpegs from my iPhone at any time with the same interface as my iPhone photos. The official AppleScript interfaces are not powerful enough to do what I need. My solution is accessing the SQLite databases of Capture One and Apple Photos directly and doing some simple data wrangling which Julia is perfectly suited for.

Summary of Julia Plotting Packages

By: Christopher Rackauckas

Re-posted from: http://www.stochasticlifestyle.com/summary-of-julia-plotting-packages/

This is a repost of my response on the Julia Discourse on this topic. I was asked to make a blog post so here you go!

The “Main” Plotting Packages

Here’s a quick summary of the most widely used plotting packages. I may have missed one, but I haven’t missed one that is very widely used.

  • Plots.jl is the most used. It’s probably the most documented, used in the most tutorials, and is used in many videos.
    • Pros: Its main draw is that it has a lot of plugins to other packages through its recipes system, which means that a lot of odd things like `plot(sol::ODESolution)` or showing the sparsity of a `BandedMatrix` just works. With all of these integrations, it’s normally what I would recommend first to newcomers since they will generally get the most done with the least work. It has a backend system, so you can make it generate plots via GR (the default), Plotly (i.e. make webpages), pyplot, PGFPlots (Latex output), UnicodePlots (i.e. output plots as text). This ease of use and flexibility is what its main draw is.
    • Cons: Its downside has traditionally been its startup time, though it’s nearly a second now so that’s fine. Its main downside now is mostly that it’s not as configurable as something like Makie, and it’s not as optimized if you get up to millions of points. Its flexibility means it’s not just for standard plots but also for animations, building small graphical user interfaces, and building small apps.
  • Makie is probably the second most popular. It’s natively Julia so it’s cool in that aspect, you can see code all the way down.
    • Pros: It’s very optimized for large plots, especially with GPU acceleration via the OpenGL backend (GLMakie). It has a lot of examples these days.
    • Cons: Its downside is that it’s a bit less “first user friendly”, given that its flexibility means there’s a lot more options you’re forced to specify everywhere. It has a recipe system now but it’s fairly new and not well-integrated with most of the ecosystem, so it’s not as seamless as Plots, though by 2024 I would assume that would largely be fixed. It has the longest startup time, used to be in minutes but now it’s like 5-10 seconds.
  • AlgebraOfGraphics.jl is a grammar of graphics front-end to Makie. This essentially means it has an API that looks and acts like R’s ggplot2. Thus it has largely the same pros and cons as Makie, since it’s just calling Makie under the hood, but with the additional pro of being more familiar to users coming from R or con if you haven’t worked with grammar of graphics before (or don’t like the style).
  • Gadfly is a grammar of graphics based library.
    • Pros: It’s very familiar to a ggplot2 user. Its default theme is pretty nice looking.
    • Cons: It’s a bit high on startup time, closer to Makie than Plots. Also, it’s pretty feature poor. In particular, it is missing 3D plots, animations, the ability to make interactive apps with buttons, etc. For these reasons more and more people are adopting AlgebraOfGraphics, but if you’re just doing some standard statistics it’s fine.
  • Vega and VegaLite are of the same camp as Gadfly in the focus towards “standard” statistics and data science, but using wrappers to Javascript libraries.
    • Pro: Fast startups
    • Cons Similar to Gadfly, little to no flexibility (making apps, animations, …) and integration with Julia libraries beyond Queryverse.
  • PlotlyLight is a no-frills wrapper to Plotly.
    • Pro: No startup time
    • Cons: Requires reading the Plotly docs to know how to use it and has little flexibility or integration into Julia libraries.
  • GR is a front end to a C library GR. It’s actually used as the default front-end from Plots.jl. Many more people use it from Plots.jl than directly due to the integrations and docs, but it is nice for some things on its own.
    • Pros: It’s fast, scales fairly well, has a fast startup time, has a nice GUI for investigating results, integrates well with ITerm, very flexible.
    • Cons: It’s docs are bit difficult, and it doesn’t have any integrations with Julia libraries.
  • PGFPlotsX.jl is a front-end to generate plots for Latex.
    • Pros: Fast startup, output to Latex which makes it easy to then further modify in publication documents.
    • Cons: Its interface is wonky, even if you are familiar with the pgfplots Latex package. This makes quite hard to use and teach. Very few integrations with Julia libraries (Measurements and Colors only?). Lacking flexibility in terms of animations and making apps, though it’s quite flexible in its ability to modify the plots and make weird things.
  • UnicodePlots.jl is very simple, fast startup, and plots to text. Its downside of course is that text is the only output it has.
  • Gaston.jl a front-end to gnuplot.
    • Pros: Fast startup.
    • Pretty basic, lacking flexibility and integrations with Julia packages. Requires gnuplot so limitations on where it can be installed (only supports linux?).
  • GMT.jl is “generic mapping tools”. It has some plotting tools highlighted here.
    • Pros: Has good examples in the docs. Nice extra tools for maps.
    • Cons: Missing some standard plot types like trisurf, missing integrations with other Julia packages.
  • GNUPlot.jl uses gnuplot under the hood.
    • Pros: Instant startup, has some interesting data science integrations for things like named datasets, very complete set of plots
    • Cons: Not the most complete documentation, requires gnuplot so limitations on where it can be installed (only supports linux?)

tl;dr on plotting in Julia

Plots.jl is the most used package in the Julia programming language for a reason. It’s very flexible, integrates with the most Julia packages so you’ll find it all throughout other docs, and it has many of the advantages of the other libraries through its backend system. Thus if you needed Latex output, use the pgfplots backend. If you needed a webpage, use the Plotly backend. Unicodeplots backend when you want text output. Or the GR default for the basics. With Julia v1.9 its startup time is much improved (and it’s like sub second on v1.10 beta), which was its major complaint before. If you’re going to use one plotting library and don’t care too much about every little detail, then Plots.jl is a good one to go with. It’s definitely not the best in any of the cases, animations are better in Makie, Latex is better in PGFPlotsX, etc., but it’s capable everywhere.

Makie.jl is catching up and may be the default in the near future. It scales well and its getting all of the niceties of Plots.jl. I wouldn’t learn it first if you’re new to Julia (right now, though that will likely change by 2024). But if you need animations or want to add custom buttons to a window (make a quick GUI-like thing), Makie is unmatched. If it makes its standard plotting interface a bit simpler, gets a few more integrations, and thus matches Plots.jl in simplicity, it may hit a “best of most worlds” soon.

Otherwise it’s a bit domain specific. If you were using Plots.jl and needed more flexibility for publication-quality plots, PGFPlotsX.jl can help. Or if you prefer grammar of graphics, AlgebraOfGraphics.jl is good. If you’re a stats person you may find Gadfly or VegaLite familiar, though I wouldn’t recommend them first because these don’t satisfy general user needs (try making a plot of an FEM output and see what I mean).

All of these are pretty good. You have a lot of options. In the end, pick the one that suits your needs best.

The post Summary of Julia Plotting Packages appeared first on Stochastic Lifestyle.