Category Archives: Julia

Wilmott – Automatic Differentiation for the Greeks

By: Julia Computing, Inc.

Re-posted from:

Online quantitative finance magazine Wilmott featured Julia yet again.

Julia Computing’s Dr. Simon Byrne and Dr. Andrew Greenwell engage the magazine readers in a solution they built in Julia, that uses Automatic Differentiation (AD) to calculate price sensitivities, also known as the Greeks.

Fast and accurate calculation of these price sensitivities is extremely crucial in understanding the risk of an option position, and using AD in Julia achieves precisely that.

Traditionally, the world is familiar with using finite-difference approximation for the same calculations. Simon and Andrew go on to argue how that solution is numerically unstable, and how their solution will not only shoot up numerical accuracy, but will also eliminate computational overheads.

To put that in context, there are C++ libraries that assist in these calculations too, QuantLib being one of them. However, a simple implementation of a Cox–Ross–Rubinstein tree (for pricing an American put) with AD in Julia fared 3x times faster than with the C++ library. The code for this example is available here.You can also read the article to know more.

At Julia Computing, we curate all this and much more as part of JuliaFin, a suite of Julia packages that simplify the workflow for quantitative finance, including storage, retrieval, analysis and action.

Julia is already solving a variety of use cases. BlackRock, the
Federal Reserve Bank of New
, Nobel
Laureate Thomas J.
and the world’s largest investment banks,
risk managers, fund
, asset
managers, foreign exchange
, energy
traders, commodity traders and others are all using Julia to solve some of their very complex and challenging quantitive computational problems.

Timing in Julia

By: pkofod

Re-posted from:

Timing code is important when you want to benchmark or profile your code. Is it the solution of a linear system or the Monte Carlo integration scheme that takes up most of the time? Is version A or version B of a function faster? Questions like that show up all the time. Let us have a look at a few of the possible ways of timing things in Julia.

The basics

The most basic timing functionalities in Julia are the ones included in the Base language. The standard way of timing things in Julia, is by use of the @time macro.

julia> function test(n)
           A = rand(n, n)
           b = rand(n)
           @time A\b
test (generic function with 1 method)

Do note, that the code we want to time is put in a function . This is because everything we do at the top level in the REPL is in global scope. It’s a mistake a lot of people do all the time, but currently it is a very bad idea performance wise. Anyway, let’s see what happens for n = 1, 10, 100, and 1000.

julia> test(1);
  0.000002 seconds (7 allocations: 320 bytes)
julia> test(10);
  0.000057 seconds (9 allocations: 1.313 KB)
julia> test(100);
  0.001425 seconds (10 allocations: 80.078 KB)
julia> test(1000);
  0.033573 seconds (10 allocations: 7.645 MB, 27.81% gc time)
julia> test(1000);
  0.045214 seconds (10 allocations: 7.645 MB, 47.66% gc time)

The first run is to compile both test, and then we have a look at what happens when the dimension of our problem increases. Elapsed time seems to increase, and we also see that the number of allocations, and the amount of memory that was allocated increases. For the runs with dimension 1000 we see something else in the output. 30-50% of the time was spent in “gc”. What is this? Julia is a garbage collected language. This means that Julia keeps track of current allocations, and frees the memory if it isn’t needed anymore. It doesn’t do this all the time, though. Running the 1000-dimensional problem once more gives us

julia> test(1000)
  0.029277 seconds (10 allocations: 7.645 MB)

We see it runs slightly faster, and there is no GC time this time around. Of course, these things will look slightly different if you try to replicate them.

So now we can time. But what if we want to store this number? We could be tempted to try

t = @time 3+3

but we will realize, that what is returned is the return value of the expression, not the elapsed time. To save the time, we can either use @timed or @elapsed. Let us try to change the @time to @timed and look at the output when we have our new test2 function return the return value.

julia> function test2(n)
           A = rand(n, n)
           b = rand(n)
           @timed A\b
test2 (generic function with 1 method)
julia> test2(3)

We see that it returns a tuple with: the return value of A\b followed by the elapsed time, then the bytes allocated, time spent in garbage collection, and lastly some further memory counters. This is great as we can now work with the information @time printed, but we still have access to the results of our calculations. Of course, it is a bit involved to do it this way. If we simply wanted to see the elapsed time to act on that – then we would just use @time as we did above.

Before we move on to some simpler macros, let us consider the last “time*-family” macro: @timev. As we saw above, @timed contained more information about memory allocation than @time printed. If we want the “verbose” version, we use @timev (v for verbose):

julia> function test3(n)
           A = rand(n, n)
           b = rand(n)
           @timev A\b
test3 (generic function with 1 method)

Running test3 on a kinda large problem, we see that is does indeed print the contents of Base.GC_Diff

julia> test3(5000);
  1.923164 seconds (12 allocations: 190.812 MB, 4.67% gc time)
elapsed time (ns): 1923164359
gc time (ns):      89733440
bytes allocated:   200080368
pool allocs:       9
malloc() calls:    3
GC pauses:         1
full collections:  1

If any of the entries are zero, the corresponding lines are omitted.

julia> test3(50);
  0.001803 seconds (10 allocations: 20.828 KB)
elapsed time (ns): 1802811
bytes allocated:   21328
pool allocs:       9
malloc() calls:    1

Of the three macros, you’ll probably not use @timev a lot.

Simpler versions

If we only want the elapsed time or only want the allocations, then we used either the @elapsed or @allocated macros. However, these do not return the results of our calculations, so in many cases it may be easier to just used @timed, so we can grab the results, the elapsed time, and the allocation information. “MATLAB”-style tic();toc()‘s are also available. toc() prints the time, while toq() is used if we want only the returned time without the printing. It is also possible to use time_ns() to do what time.time() would do in Python, although for practically all purposes, the above macros are recommended.

More advanced functionality

Moving on to more advanced features, we venture into the package ecosystem.

Nested timings

The first package I will present is the nifty TimerOutputs.jl by Kristoffer Carlsson. This packages essentially allows you to nest @time calls. The simplest way to show how it works, is to use the example posted at the announcement (so credit to Kristoffer for the example).

using TimerOutputs
# Create the timer object
to = TimerOutput()
# Time something with an assigned label
@timeit to "sleep" sleep(0.3)
# Data is accumulated for multiple calls
for i in 1:100
    @timeit to "loop" 1+1
# Nested sections are possible
@timeit to "nest 1" begin
    @timeit to "nest 2" begin
        @timeit to "nest 3.1" rand(10^3)
        @timeit to "nest 3.2" rand(10^4)
        @timeit to "nest 3.3" rand(10^5)

Basically we’re timing the sleep call in one time counter, all the additions in the loop in another counter, and then we do some nested generation of random numbers. Displaying the to instance gives us something like the following

                                Time                   Allocations      
                        ──────────────────────   ───────────────────────
    Tot / % measured:        6.48s / 5.60%           77.4MiB / 12.0%    
 Section        ncalls     time   %tot     avg     alloc   %tot      avg
 sleep               1    338ms  93.2%   338ms    804KiB  8.43%   804KiB
 nest 1              1   24.7ms  6.80%  24.7ms   8.52MiB  91.5%  8.52MiB
   nest 2            1   9.10ms  2.51%  9.10ms    899KiB  9.43%   899KiB
     nest 3.1        1   3.27ms  0.90%  3.27ms   8.67KiB  0.09%  8.67KiB
     nest 3.3        1   3.05ms  0.84%  3.05ms    796KiB  8.34%   796KiB
     nest 3.2        1   2.68ms  0.74%  2.68ms   92.4KiB  0.97%  92.4KiB
 loop              100   6.97μs  0.00%  69.7ns   6.08KiB  0.06%      62B

which nicely summarizes absolute and relative time and memory allocation of the individual @timeit calls. A real use case could be to see what the effect is of using finite differencing to construct the gradient for the Generalized Rosenbrock (GENROSEN) problem from CUTEst.jl using a conjugate gradient solver in Optim.jl.

using CUTEst, Optim, TimerOutputs
nlp = CUTEstModel("GENROSE")
const to = TimerOutput()
f(x    ) =  @timeit to "f"  obj(nlp, x)
g!(g, x) =  @timeit to "g!" grad!(nlp, x, g)
@timeit to "Conjugate Gradient" begin
    res = optimize(f, g!, nlp.meta.x0, ConjugateGradient(), Optim.Options(iterations=5*10^10));
@timeit to "Conjugate Gradient (FiniteDiff)" begin
    res = optimize(f, nlp.meta.x0, ConjugateGradient(), Optim.Options(iterations=5*10^10));
show(to; allocations = false)

the output is a table as before, this time without the allocations (notice the use of the allocations keyword in the show method)

             Tot / % measured:                  33.3s / 100%     
 Section                           ncalls     time   %tot     avg
 Conjugate Gradient (FiniteDiff)        1    33.2s  99.5%   33.2s
   f                                1.67M    32.6s  97.9%  19.5μs
 Conjugate Gradient                     1    166ms  0.50%   166ms
   g!                               1.72k   90.3ms  0.27%  52.6μs
   f                                2.80k   59.1ms  0.18%  21.1μs

And we conclude: finite differencing is very slow when you’re solving a 500 dimensional unconstrained optimization problem, and you really want to use the analytical gradient if possible.


Timing individual pieces of code can be very helpful, but when we’re timing small function calls, this way of measuring performance can be heavily influenced by noise. To remedy that, we use proper benchmarking tools. The package for that, well, it’s called BenchmarkTools.jl and is mainly written by Jarrett Revels. The package is quite advanced in its feature set, but its basic functionality is straight forward to use. Please see the manual for more details than we provide here.

Up until now, we’ve asked Julia to tell us how much time some code took to run. Unfortunately for us, the computer is doing lots of stuff besides the raw calculations we’re trying to time. From the example earlier, this means that we have a lot of noise in our measure of the time it takes to solve A\b. Let us try to run test(1000) a few times

julia> test(1000);
  0.029859 seconds (10 allocations: 7.645 MB)
julia> test(1000);
  0.033381 seconds (10 allocations: 7.645 MB, 6.41% gc time)
julia> test(1000);
  0.024345 seconds (10 allocations: 7.645 MB)
julia> test(1000);
  0.039585 seconds (10 allocations: 7.645 MB)
julia> test(1000);
  0.037154 seconds (10 allocations: 7.645 MB, 2.82% gc time)
julia> test(1000);
  0.024574 seconds (10 allocations: 7.645 MB)
julia> test(1000);
  0.022185 seconds (10 allocations: 7.645 MB)

There’s a lot of variance here! Let’s benchmark instead. The @benchmark macro won’t work inside a function as above. This means that we have to be a bit careful (thanks to Fengyang Wang for clarifying this). Consider the following

julia> n = 200;
julia> A = rand(n,n);
julia> b = rand(n);
julia> @benchmark A\b
  memory estimate:  316.23 KiB
  allocs estimate:  10
  minimum time:     531.227 μs (0.00% GC)
  median time:      718.527 μs (0.00% GC)
  mean time:        874.044 μs (3.12% GC)
  maximum time:     95.515 ms (0.00% GC)
  samples:          5602
  evals/sample:     1

This is fine, but since A and b are globals (remember, if it ain’t wrapped in a function, it’s a global when you’re working from the REPL), we’re also measuring the time dynamic dispatch takes. Dynamic dispatch happens here, because “Julia” cannot be sure what the types of A and b are when we invoke A\b since they’re globals. Instead, we should use interpolation of the non-constant variables, or mark them as constants using const A = rand(n,n) and const b = rand(20). Let us use interpolation.

julia> @benchmark $A\$b
  memory estimate:  316.23 KiB
  allocs estimate:  10
  minimum time:     531.746 μs (0.00% GC)
  median time:      717.269 μs (0.00% GC)
  mean time:        786.240 μs (3.22% GC)
  maximum time:     12.463 ms (0.00% GC)
  samples:          6230
  evals/sample:     1

We see that the memory information is identical to the information we got from the other macros, but we now get a much more robust estimate of the time it takes to solve our A\b problem. We also see that dynamic dispatch was negligible here, as the solution takes much longer to compute than for Julia to figure out which method to call. The @benchmark macro will do various things automatically, to try to give as accurate results as possible. It is also possible to provide custom tuning parameters, say if you’re running these benchmarks over an extended period of time and want to track performance regressions, but that is beyond this blog post.

Dynamic dispatch

Before we conclude, let’s have a closer look at the significance of dynamic dispatch. When using globals it has to be determined at run time which method to call. If there a few methods, this may not be a problem, but the problem begins to show itself when a function has a lot of methods. For example, on Julia v0.5.0, identity has one method, but + has 291 methods. Can we measure the significance of dynamic dispatch then? Sure. Just benchmark with, and without interpolation (thanks again to Fengyang Wang for cooking up this example). To keep output from being too verbose, we’ll use the @btime macro – again from BenchmarkTools.jl.

julia> x = 0
julia> @btime identity(x)
  1.540 ns (0 allocations: 0 bytes)
julia> @btime +x
  15.837 ns (0 allocations: 0 bytes)
julia> @btime identity($x)
  1.540 ns (0 allocations: 0 bytes)
julia> @btime +$x
  1.548 ns (0 allocations: 0 bytes)

As we can see, calling + on the global x takes around 10 times a long as the single method function identity. To show that declaring the input a const and interpolating the variable gives the same result, consider the example below.

julia> const y = 0
julia> @btime identity(y)
  1.539 ns (0 allocations: 0 bytes)
julia> @btime +y
  1.540 ns (0 allocations: 0 bytes)
julia> @btime identity($y)
  1.540 ns (0 allocations: 0 bytes)
julia> @btime +$y
  1.540 ns (0 allocations: 0 bytes)

We see that interpolation is not needed, as long as we remember to use constants.


There are quite a few ways of measuring performance in Julia. I’ve presented some of them here, and hopefully you’ll be able to put the tools to good use. The functionality from Base is good for many purposes, but I really like the nested time measuring in TimerOutputs.jl a lot, and for serious benchmarking it is impossible to ignore BenchmarkTools.jl.

Julia at the Intel AI Day, Bangalore 2017

By: Julia Computing, Inc.

Re-posted from:

Bengaluru, India – Julia Computing featured at one of India’s most prominent AI conferences, demonstrating two very powerful Deep Learning use cases the company is trying to solve using Julia on Intel’s hardware.

The two day event was organized and crafted to showcase robust AI-supporting hardware and software solutions from Intel and it’s partners.

Julia Computing Inc, one of Intel’s partners from India, took centre-stage on day two for their demonstrations. The first of the two demos, namely Neural Styles caught the audience’s fancy – building a neural network imposing the style of one image onto another. Our very own Ranjan Anantharaman took a live picture of the audience and applied transforms to it in real-time.

The second demo targeted solving the serious problem of identifying if a person has symptoms of Diabetic Retinopathy by taking only but an image of his retina as an input, without any human intervention or prediction.

The following video holds a glimpse of what the two firms envision as the future of AI.

Julia Computing and Intel – Acelerating the AI revolution

Also see this whitepaper on Intel and Julia Computing working together on an AI stack.

About Julia

Julia is the simplest, fastest and most powerful numerical computing language available today. Julia combines the functionality of quantitative environments such as Python and R, with the speed of production programming languages like Java and C++ to solve big data and analytics problems. Julia delivers dramatic improvements in simplicity, speed, capacity, and productivity for data scientists, algorithmic traders, quants, scientists, and engineers who need to solve massive computational problems quickly and accurately.

Julia offers an unbeatable combination of simplicity and productivity with speed that is thousands of times faster than other mathematical, scientific and statistical computing languages.

Partners and users include: Intel, The Federal Reserve Bank of New York, Lincoln Laboratory (MIT), The Moore Foundation and a number of private sector finance and industry leaders, including several of the world’s leading hedge funds, investment banks, asset managers and insurers.

About Julia Computing, Inc.

Julia Computing, Inc. was founded in 2015 to develop products around Julia such as JuliaFin. These products help financial firms leverage the 1,000x improvement in speed and productivity that Julia provides for trading, risk analytics, asset management, macroeconomic modeling and other areas. Products of Julia Computing make Julia easy to develop, easy to deploy and easy to scale.